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1. Introduction 
 
  A constant challenge in automating the field of state-of-the-art data fusion systems to aid and 
amplify the operator’s ability is to process data in or near real-time and produce prompt results to 
the operator. The speed of any fusion process is critical in defining its usefulness in time-
sensitive missions. The current-day battlefield surveillance operator is faced with a data 
reduction task where enemy movements amongst civilian traffic must be manually identified and 
correlated with other off-board surveillance systems to better understand unfolding events as 
they are happening.  
 
  Modern fusion systems often suffer poor speed performance as their advanced correlation 
techniques and np-hard computations are more compute intensive than single-processor 
computers can handle. These systems generate valuable products but require a great amount of 
time to complete. Therefore the battlefield situation is known hours later or in some cases the 
next day. Consider the impact of a real-time solution allowing a complex fusion system to 
function in or near real-time. Multiple-processor, or parallel computers offer a tremendous 
performance potential but come at a price. The cost of purchasing and maintenance of such a 
machine can be expensive. Further, implementing and/or porting the fusion algorithms onto these 
machines can add significant costs. 
 
  The purpose of this effort was to define, prototype, and demonstrate an affordable next-
generation JDL Level 2 fusion and exploitation architecture called the High Performance Real 
Time Fusion Architecture (HPRTF). The scope of this effort includes the identification of the 
limiting criteria in current Level 2 fusion assessment systems that inhibit them from providing 
real-time assessment. Then, using this criterion and an assessment of the hardware requirements 
trade space, determine and propose the required solutions. The trade-space of hardware and 
software solutions will include system cost and maintenance among other factors. The proposed 
solutions will consist of both hardware and software approaches including an assessment of cost 
impact. The software developed will be made portable across multiple hardware architectures. 
The appropriateness of the solutions will then be validated by applying them to an existing state-
of-the-art Level 2 fusion system, the Nodal Exploitation Application Toolkit (NEAT) developed 
by Sterling Software; Rome, NY. The effort will culminate in a demonstration of the prototype 
HPRTF system using multiple data scenarios. 
 
  The effort succeeded in providing a demonstration of the prototype HPRTF system using 
multiple data scenarios on a Linux Cluster at the Air Force Research Laboratory’s Rome 
Research Site, in Rome, NY. Performance improvements were made by parallelizing existing 
algorithms across multiple processors. However the sequential algorithmic processing was 
optimized as well. Compared to the original software running on a Linux PC, results show an 
average of 47 times speed improvement on a single processor and a 95 times speed improvement 
when run in parallel across 4 CPUs. A development environment was also installed to facilitate 
integration and reuse of the HPRTF products with other projects after completion of the HPRTF 
contract. 
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1.1 Introduction to Fusion 
 
The Department of Defense Joint Directors of Laboratories (JDL) have defined data fusion as a 
multilevel, multifaceted process dealing with the automatic detection, association, correlation, 
estimation, and combination of data and information from single and multiple sources.  This 
multilevel model classifies data fusion into four categories. 
 
Level 1 Fusion accomplishes object refinement, or the process of fusing detection-level data to 
entity tracks. These tracks contain state-vector information concerning the location and velocity 
of a single target and optionally some form of identification, based on the sensor type.  
 
Level 2 Fusion refers to situation refinement and assessment, or the process of fusing Level-1 
tracks into groups based on physical location and target identities. Situation assessment is 
accomplished by identifying the general purpose or Military Unit Id of the target groups based 
on a rule-based or template-based association. 
 
Level 3 Fusion is threat refinement and assessment, which is the process of fusing the Level-2 
situation assessment products and related capability data to infer intent of these target groups. 
 
Level 4 Fusion refers to process refinement, which monitors the performance of the first 3 
Levels and redirects surveillance assets to improve performance of the overall fusion process and 
thereby increasing the quality of the data. 
 
 
1.2 Nodal Exploitation and Analysis Tools – An Introduction to NEAT 
 
   The function of NEAT is an automation of what is currently done by operators correlating and 
associating intelligence reports by hand. This is currently done by either secure radio between 
surveillance platforms or ground-stations, or days or weeks after the data was collected. The 
amount and quality of correlation and identification of military units by this method is based 
solely on the resourcefulness and military knowledge of the operators examining the intelligence 
reports.  There is a clear need for an automation of this process to allow operators to both cover 
greater areas and produce quicker processing times.  
 
  NEAT is a JDL Level-2 Fusion system, which means that it has the ability to locate, classify, 
and track military units. It accomplishes this by passing data and control parameters through a 
sequence of processing events. This process is outlined in Figure 1. 
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  First, a user supplies a list or set of templates for NEAT to use. Templates contain equipment 
and organization descriptions and layout that define military unit types. The selected template set 
is effectively the search criteria for all further processing. The operator uses the Unit Selection 
Tool to choose  military units of interest and form these templates. The selected template set can 
either be a single-depth list of military unit types or a “tree” of unit types referred to as a 
template hierarchy. Optionally, the user can use the Template Editor to form new templates or 
modify existing ones. 
 
  With these selected templates in place, NEAT can begin to process intelligence reports. Level-1 
reports from offboard sources are first parsed and formatted by the Generic Intelligence 
Processor. The properly formatted reports are then inserted into the Fusion Database used by 
NEAT. The Multi-Source Correlator then reads these Level-1 reports and divides them into 
correlated lists of radar, radio, and vehicle contact reports.  
 
  At this point a “scene” of data is ready to be processed by the Force Aggregator. A scene 
refers to a snapshot of activity over a battlefield for a specific time interval. This time interval 
varies with the surveillance assets used, the geographic size of the area covered, and amount of 
activity within the area.  
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Figure 1- NEAT Application Suite (Sterling Software) 
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  Once a scene of data is collected, the Force Aggregator compares the contact reports with 
templates either chosen by the user or selected automatically from a hierarchical tree of 
templates. Based on the associations of the contact reports with the template set and other contact 
reports, clusters of reports are merged to form nodes. These nodes are classified based on the 
content of their group, using the best-fit military template. A track is established for the node by 
the Cluster Tracker and is updated as additional scenes of data are received. 
 
  Once processing is completed, the final node reports are displayed on the Map Display 
Interface. The display allows detailed examination of the output of the Force Aggregator 
including what contact reports are contained in each node. 
  
  NEAT fulfills the role of a Level-2 Fusion system but cannot execute in real-time, and could 
take minutes to several hours to process a single scene of Level-1 intelligence reports. Therefore 
the usage of NEAT is currently limited to off-line use (non-real-time) to process the reports after 
the fact. 
 
  NEAT would become a powerful tool if it could process Level-1 reports in real-time. Operating 
from a surveillance aircraft or ground-station, NEAT could monitor military communication 
networks for real-time Level-1 intelligence feeds (see Figure 2). It would quickly locate, classify, 
and track military units and publish the C2 Nodes across these networks to the operators that 
need them. This would provide a situation-awareness on the battlefield that has never been 
realized before. Furthermore, by use of custom templates entered by the operator, it could be 
used as a trip-wire system to monitor military and non-military activity for a specific event over 
an entire area of interest.  

H P R T F

JS T A R S R C -135 U -2

R ea l-tim e  fusion  and  
d issem in a tion  of C 2N od es

G L O B A L
H A W K

N E A T

 
 
 
 

Figure 2- Potential of “Real-Time” NEAT 
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1.3 The Force Aggregator 
 
  The unique feature of NEAT is the Force Aggregator, which is the centerpiece application in 
the suite of NEAT tools. It includes a number of innovative algorithms to support Level 2 fusion 
of correlated all-source intelligence data. These include capabilities to fuse Level 1 radar, radio, 
and vehicle contact reports, and then using templating techniques based on Bayesian probability 
theory, classify and identify military units and C2 nodes. The Force Aggregator includes a 
situation display capability providing the operator access to the results of NEAT Level 2 
assessment. The map-based graphical display shows the probable location of NEAT-identified 
military units, as well as all contacts that contribute to the identity.  
 
Figure 3 below depicts the process flow diagram of the NEAT Force Aggregator component.

Contact 
Association 
Computation

Evidence
Network

Algorithm

Contact 
Report 
Creation

Database
Query/Update

Contact
Clustering

Cluster
Tracking

Cluster
Classification

Radar, Radio. & Vehicle Reports

Contact 
Reports

Contact Certainty
Coefficients

Contact Clusters

Updated Cluster
Track History

Military Unit Reports

Military Unit
Templates

Contact 
Reports

Contact 
Reports

Figure 3 – Force Aggregation Process Flow (Sterling Software) 
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   A short description of each of the NEAT Force Aggregator components follows: 
 

• Database Query  - This is the first step in the force aggregation process that obtains a list 
of radar, radio, and vehicle intelligence reports produced by Level 1 Fusion applications. 
These intelligence reports can be filtered by geographic region, timeliness, allegiance, 
affiliation, and so on. A Sybase database is used by NEAT to store and access data.  

 
• Contact Report Creation – The next step in the Force Aggregation process flow creates 

a table of contact reports from the intelligence reports. The contact reports are a reduction 
of the Intel reports to an efficient format for subsequent classifier processing.   

 
• Evidence Network Algorithm – This is an algorithm for military unit template set 

selection. A military unit template is a data structure that describes the composition of a 
military unit and contains arguments used by a Bayesian classifier such as prior 
probabilities and observation search radii. The goal of the Evidence Network Algorithm 
is to select, given the available intelligence data, a military unit template set that is 
strongly correlated with the current contact report set and that is consistent with the 
probability space partitioning rules of Bayesian probability. 

 
• Contact Association Computation – The fourth step in the force aggregation process is 

to take the contact reports created from step 2, and the template set selected from step 3, 
and use the Bayesian classifier to compute contact association coefficients. These 
coefficients express the relative strengths of the pair-wise relationships between contacts. 
The association coefficients are later normalized and biased to express a certainty that the 
contacts of a contact pair are or are not members of the same contact cluster. 

 
• Current Clusters – at this point, contacts are grouped into clusters of mutually related 

contacts given the certainty coefficients computed in step 4.This is accomplished using a 
clustering algorithm which is based upon a greedy clustering algorithm. 

 
• Cluster Tracking – The sixth step in the force aggregation process flow is to perform 

Cluster Tracking. The cluster tracker is based on a “Bayesian sonar post-detection 
acoustic contact data fusion algorithm” that Sterling Software adapted to the ground 
cluster-tracking problem.  

 
• Cluster Classification - The final algorithmic step of the force aggregation process is to 

perform cluster classification, where a military unit classification is assigned to each 
cluster given the cluster posterior probabilities and military unit prior probabilities. 

 
• Database Update - The final overall step in the force aggregation process is the Database 

Update procedure, where new node records are inserted into the Sybase database and the 
radar, radio, and vehicle intelligence reports are updated to reflect new entity associations 
as identified by the Level 2 fusion process. 
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1.4 Scenario definitions 
 
  Simulated data was used to feed Level 1 Fusion products to NEAT. Many data sets or scenarios 
were used during this effort for investigating performance bottlenecks, both in the existing 
algorithms and testing/validating the optimized parallel revisions in downstream tasks. Of these, 
three main scenarios were chosen to exercise different algorithmic steps within the Force 
Aggregator. A brief explanation of these scenarios follow. 
 

• 618th SAM (Surface to Air Missile) Regiment Scenario (SAM-618) 
This scenario contains 161 total intelligence reports, consisting of 51 radar reports, 110 
vehicle reports, and no radio reports. A template file is used to populate 12 military unit 
templates for all force aggregation processing. In this usage of NEAT, the operator is 
searching for a SAM regiment within a geographic area, and only SAM templates are 
considered. This is the smallest scenario and requires just minutes to execute (single 
CPU, serial version), which makes it a good candidate for software validation as it 
provides minimal testing time. 
  

• TRAC R6 Division Scenario (TRAC-R6) 
This intermediate-sized scenario contains 1,465 intelligence reports spread across 162 
radar, 3 radio, and 1300 vehicle reports. A template file containing 18 military unit 
templates is used. This scenario contains a motorized rifle division of considerable size 
and distribution, and specifically impacts the current clustering algorithm due to the large 
number of spontaneous clusters the scenario generates. 

 
• TRAC R61 Division Scenario (SCEN-R61) 

This scenario is the largest data set considered in this effort, with 1531 intelligence 
reports in 168 radar, 4 radio, and 1359 vehicle reports. This is basically a motorized rifle 
regiment with the addition of SAM fortifications. Templates are passed in the form of a 
Hierarchy file containing a total of 185 military unit templates. This is a usage of NEAT 
where the operator wants an intelligence preparation of the battlefield, and does not 
necessarily know what ground units exist. This heavily stresses the contact association 
coefficients processing step by greatly increasing the number of templates considered. 
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2. High Performance Real-Time Fusion (HPRTF) 
 
This section will introduce the analysis done to NEAT and work performed to build the 
prototype HPRTF architecture. The process-intensive algorithms from NEAT will be identified, 
studied, and ported into the HPRTF architecture to allow possible real-time Level-2 Fusion. It 
was the goal of HPRTF to produce the following: 
 
• Identification of processing bottlenecks that limit current Level 2 fusion systems from 

performing in real-time. 
• Development of a hardware requirements trade space for real-time execution. 
• Identification of affordable solutions. 
• Detailed definition of an affordable, scalable, next generation fusion architecture, which will 

support real-time execution of Level 2 fusion systems. 
• Development and demonstration of critical portions of a next generation Level 2 Fusion 

architecture prototype system that demonstrates the capability of real-time execution. 
 
  To analyze the code to determine where most processing time was spent, the Integrated Sensors 
Inc. “RTExpress” product was used as a development, testing, and visualization environment. 
Additionally, data transport and distribution libraries in RTExpress were augmented and used to 
define the HPRTF system. The top-level Force Aggregation function was written in Matlab™, 
with all sub-components of the force aggregation process divided into Matlab-accessible C 
functions. This allowed easy source compilation and visualization of performance across 
multiple processing nodes using RTExpress and complex data visualization using Matlab graphs 
and plots. Further, rapid prototyping of various data distribution and processing concepts were 
accomplished at the Matlab level without modifying the algorithm source code.  
 
2.1 Processing Bottlenecks and Solutions 
 
  Of the main processes contained in Figure 1, The Force Aggregator component is the main 
limiting factor restricting the NEAT system from providing real-time situation refinement. This 
component contains the entire Level-2 Fusion engine used by NEAT. Thus under this task the 
primary function within NEAT that will be analyzed is the Force Aggregator component. The 
remaining components are not time constraints, rather they serve to configure the Force 
Aggregator with templates, feed Level-1 contact reports into it, and display the resulting nodes as 
output. In addition, it was not in the scope of this effort to re-write the display portion of NEAT 
so the graphic interface was completely reused. 
 
  Later sub-sections will address how each component in the Force Aggregator works and what 
processing bottlenecks exist in NEAT. Each bottleneck identified will include a data-flow 
diagram to aid in the understanding of its function. While this section will detail force 
aggregation processing bottlenecks within NEAT, it should be noted that NEAT serves only as a 
test case to the HPRTF architecture. HPRTF and its assumptions and requirements should be 
generic to all Level 2 Fusion systems. 
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2.1.1 The Sybase Bottleneck 
 
  NEAT uses a Sybase database as a back plane to manage contact report data and the resulting 
fused products. Sybase is not a real-time database and represents a significant non-processing 
bottleneck. If reduced, significant time savings could be gained. Access to Sybase on some HPC 
platforms may be difficult and slow, and there is no desire to tie a Sybase dependency into 
HPRTF. Sterling Software had originally implemented a data cache system to regain some of the 
performance lost to Sybase. This cache system could be reused to form a shell around the Force 
Aggregation code to both allow the algorithms to function with minimal code changes and allow 
execution without the use of Sybase (see Figure 4). Eventually HPRTF will be interfaced to the 
original NEAT system. This will require a file or socket connection to allow two-way 
communication between NEAT and HPRTF hosts. These requirements will be kept in mind 
while evaluating hardware architecture solutions in section 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.2 Sybase solutions - Data Transport Mechanism HPC-Link 
 
To satisfy both a demonstration layout where both NEAT and HPRTF systems communicate in 
real-time such as with sockets over Ethernet LAN, and an engineering/testing setup where the 
same inputs can be run through HPRTF while rapidly changing fusion parameters and code 
development; the HPC-link module was created. 
 
HPC-link exists as a C library that allows the transfer of Level-2 Fusion I/O between software 
applications running on the same or different machines, with varying operating systems and 
endian-order representations.  

NEAT 
Algorithms

Data 
Cache

Sybase 
Database

NEAT 
Specific 

Fusion 
Level 2 
Specific 

Sun/Sybase
Specific 

Figure 4 – NEAT Data Access Layers 
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  Additionally, a small set of visualization tools was developed to construct and verify test case 
cache files on both the input and output side of the force aggregator. A “log” program was 
written which flattens the binary cache file into understandable ASCII text. The NEAT 
debugging printout format was used to clarify the data contents during discussions with Sterling 
Software. The log application also served as a line-by-line data porting check for implementation 
on hardware architectures with various data alignment differences. A “split” function was also 
developed to divide NEAT-generated contact report cache files into sub-cache files containing 
segregated data. These sub-cache files could then be reassembled using simple Unix shell 
utilities by concatenating the binary files into a new test case. For example, the split application 
would separate a particular cache file into radar, radio, vehicle, and node files. By reassembling 
the files without the node reports from the previous run, a static “no history” scene could be 
generated. Or perhaps the individual files could be investigated using the log application or 
plotting data values in Matlab. Figure 5 summarizes data flow in and out of HPC-link. 
 

Mercury PPC 

Sun Ultra

Linux PC 

Sun Ultra

HPC-link Matlab 

HPC Split

HPC Log

NEAT HOST 

HPRTF HOST UTILITIES 

Figure 5 – HPC-link and Utilities 
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2.1.3  Data Distribution and Collection Library 
 
 The first version of the stand-alone Force Aggregator was completed shortly after the 
completion of HPC-link and related utilities. This was a single-processor configuration which 
simply wrappered most of the Force Aggregation process under one Matlab function wrapper. A 
data transport software package was now required to facilitate execution across multiple 
processing nodes. This library augments the core RTExpress message-passing layer which 
utilizes MPI for all low-level operations. These augmentations were required due to the 
complexity and size of data associated with the Level 2 Fusion process. Figure 6 is a table of 
these data management functions. 
 
 
DispListInfo Displays an entire list of Level 1 Intelligence records in ASCII for a given 

cache mxArray. 
DispRecord Displays one Level 1 Intelligence record in ASCII, given the cache 

mxArray and report index. 
DistScatter Scatters data by columns using RTExpress™ redistribute functions.  

Case 1: Group-leader-only - data is dispensed from the group leader to 
every member in the group. A full copy of the data matrix is sent to all. 
Case 2: Local mxArray - each CPU has a total copy of the mxArray and 
uses redistribute to slice the mxArray by columns. There are only local 
transfers in this case. Data is not transmitted between processing nodes. 

LeadColAdd Will perform a column add on the group-leader-only matrix. Matrices from 
worker nodes are converted to sparse matrices before collected by the 
group leader. 

LeadGather Gathers data that has been distributed (in columns) to the group leader. 
Will also concatenate data together that is not distributed to the group 
leader. 

LocalGather Will gather data that is distributed or local to every group member. Will 
also concatenate data together that is not distributed to every group 
member. 

LocalScatter Scatters data from the Group Leader to every member in the group where 
the data is distributed by columns from the input mxArray to the output 
mxArray. This function only scatters data that is not already distributed. 

MatrixLoad Loads any binary mxArray form from disk file. 
MatrixStore Stores any binary mxArray data to disk file. 
Sparse Creates a sparse matrix from a full matrix. Binary data can be passed as the 

full matrix and data compression can be applied. 
 
 Figure 6 – Data Distribution and Collection Functions 
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2.1.4 Evidence Network Algorithm 
 
The Evidence Network Algorithm is a composite, nested C++ object consisting of 8,000+ total 
lines of source code. It is the first step in a chain of processing events that forms the Force 
Aggregation function. Its main purpose simply stated is to select a reduced set of templates given 
a list of contact reports as input. Observation vectors are formed at each contact report location, 
class-conditional probability is computed for each template, and a collectively exhaustive and 
mutually exclusive template list is produced given the input contact set. This process is 
illustrated in figure 7. This was designed to alleviate the processing load involved in all 
downstream template-based computations by reducing the amount of templates in the processing 
cache. 
 
  When first investigated, processing time spent in the Evidence Network Algorithm was 
exaggerated by equipment and organization look-up function calls that used costly array-search 
loops. This originally accounted for up to 77% of the total time for a run. This was immediately 
optimized by studying how the table look-ups were used, limiting their usage, and optimizing the 
functions themselves. After which, it was found that 2-32% of processing time was spent in the 
Evidence Network. This wide time range was a result of the two processing modes in the 
Evidence Network, template set and template hierarchical processing. “Template set” refers to a 
single list of templates specified by the operator for force aggregation. In this mode, the 
Evidence Network Algorithm is largely bypassed and the fusion system is used to find and 
identify military unit types of interest to the operator. In the Hierarchical mode, an entire 
hierarchy of templates is passed to the fusion system and the Evidence Network is utilized to its 
full potential by selecting templates within the template tree that relate to contact reports in the 
scenario. The remaining templates from the hierarchical list are discarded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evidence 
Mode? N

Y

Template 
Normalization

Military Unit 
Templates 

Templates read from file 

Contact loop

Contact 
Reports 

Template loop

Search radius loop
Observation loop

Posterior Prob. 
Propagate    
 Evidence Net

Templates with 
highest probabilities 

Normalized 
Template 

Cache 

Figure 7 – Evidence Network – First Look 
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2.1.5 Evidence Network Solutions 
 
  The portion of the Evidence Network that best offered itself to parallelization is the observation 
step where observation vectors are generated for every contact report. The observation-
processing loop also constitutes nearly 90% of processing time in the Evidence Network 
Algorithm when in template-hierarchical mode. While in this mode, a data-parallel method was 
chosen for implementing this parallel step where the contact report list is initially divided across 
all processing nodes for the observation vector computation. In the case of a template list mode, 
where the operator has already pre-selected the templates, this processing step is skipped all 
together. In either case the complete template set is required on every processing node and is 
distributed by file using the original NEAT access functions. The results are then merged on the 
group leader (processing node 0) and the remaining portion of the algorithm runs sequentially. 
Figure 8 below illustrates the data flow of the parallel Evidence Network Algorithm. 
 

 
 
 
 
  The Evidence Network Algorithm also utilizes table look-up functions for military unit 
organization and equipment references. When possible, these function calls were optimized and 
in some cases the usage of the organization and equipment tables were aligned such that only one 
table search occurred per template.  
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  The greatest amount of table look-ups occur in the final “Template Normalization” step. This 
originally accounted for more than 90% of the time spent in the evidence network, reduced to 
20% after optimizations. Figure 9 illustrates these processing time improvements realized by 
sequential and parallel optimizations. 

 
 
2.1.6 Contact Association Coefficients 
 
  After optimizing the evidence network algorithm and the associated table look-ups, the “Create 
Contact Association Coefficients” step was responsible for the bulk of time (65-72%) spent in 
processing. This was a 600-line brute-force nested loop where observation vectors were formed 
for every contact report, class-conditional probability computed for each template, and the 
posterior probability of each military unit combined to form a contact association matrix.  Figure 
10 shows the nesting of each processing loop. 
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Figure 9 – Evidence Network Performance Improvements 

Figure 10 – Contact Associations – First Look 
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  This computation was necessary as every contact report ultimately needed to be compared with 
every template. Processing time could be reduced by optimizing the inner-most loops where 
most execution time was spent, or perhaps swapping the contract loop with the template loop if 
necessary, but this component best offers itself to parallelization. A data-parallel method here 
would seem to be optimal. 
 
2.1.7 Contact Association Coefficients Solutions 
 
  The solution used to implement this step was to distribute the contact report list across all 
processing nodes in a data-parallel manor and streamline the observation and association-data 
access functions. Alternative approaches were also tested, distributing the templates in data-
parallel and processing the entire contact list across all CPUs, but this did not align well with the 
neighboring fore and aft algorithms which required all templates passed to all processing nodes. 
 
  When this algorithm was first investigated, it was found to contain sequential array/table 
searches that exaggerated its slow execution speed. These sequential look-up functions were 
changed to hash-tables and the surrounding data access functions re-written to use references 
instead of passing data. The use of data references on the innermost loop resulted in a 50% 
speed-up of that section alone. Additionally, usage and walking of linked-lists were avoided 
when possible to reduce execution time further. The “GetObservation” function contained many 
linked-list access calls. A 30% speed improvement was achieved by avoiding linked-list access 
when possible. Figure 11 shows where in the processing steps these optimizations occurred and 
Figure 12 summarizes performance improvements. Processing time for this function was reduced 
by more than 50x (583 to 11 seconds in the Trac_R6 scenario) once all functions were 
optimized. The majority of the time improvement resulted from the hash table implementation. 
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2.1.8 Build Current Clusters 
 
  The “Current Clustering” Algorithm represented the most difficult step to parallelize. This 2000 
plus line module was responsible for building clusters from the current contact report set using 
the contact certainty coefficients (normalized from the contact association coefficients). It was 
the largest memory consumer of all force aggregation sub-components and could grow between 
5% to 80% of execution time depending on scenario content. Low memory conditions and 
disk/memory swapping were responsible for longer execution durations. The Current Clustering 
Algorithm contained two main processing steps. First, a “coarse clustering” processing loop 
occurs where the contact certainty table was traversed and clusters were spawned for all contact 
reports. A significant amount of memory (in some cases 200+ Mb) was used at this point as there 
existed as many clusters as contact reports and each cluster contained multiple contact report 
lists. This processing loop used the majority of time spent in current clustering, and needed to 
have access to all clusters it generated as the loop iterated, which did not immediately lend itself 
easily to parallelization. The second loop merged these spontaneous clusters and formed the 
current cluster table. These two main processing steps are show in Figure 13. 

Figure 12 – Contact Association Performance Improvements 
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2.1.9 Build Current Clusters Solutions 
 
This component is identified as a high-bandwidth step and shouldn’t lend itself easily to 
parallelization. However an alternative solution was tested using a parallel coarse clustering 
function but no improvement was gained. Due to the nature of the algorithm and amount of 
memory it requires, it was decided that this step should remain sequential on a single CPU. With 
optimization in mind, Sterling Software re-wrote this module to function several times faster 
than the original. In addition, hash-table functions developed for the Contact Association 
Coefficient Computation were reused in this step to greatly reduce the “coarse clustering” step. 
The optimizations occurred on inner processing loops and resulted in big improvements, 
reducing time spent in “Coarse Clustering” from 10 minutes to 11 seconds. Memory usage was 
still a factor, and the algorithm was later modified to use a much reduced-size contact-report list 
format that resulted in this step using a tenth of the memory than it used before. This was 
possible because many fields in the contact report structure were unused or utilized larger-than-
necessary data types. Figure 14 documents sequential optimizations made to this Force 
Aggregator component. Final performance improvement was more than 10x over the original 
optimized version (1.4 seconds using the Trac_R6 scenario, see Figure 15).  
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Figure 13 – Current Clusters – First Look 



 

18 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Coarse Clustering Loop 
Combine 
Create 
Include 
Exclude 

Cluster Merge Loop 
Minimize  
De-allocate 

Interim Current cluster list

Originally used more 
than 250Mb here, 
reduced to 24Mb after 
memory optimization.

Optimization of table 
lookups reduces time 
from 10 minutes to 11 
seconds for this loop. 

Algorithms later 
streamlined by 
Sterling Software. 
Total time for both 
loops = 1.4 seconds. 

Parallel version tested. 
Performance loss due to 
messaging overhead. 
Minimal time spent in 
this step justifies leaving 
it sequential. 

Current cluster list 

All timing and memory data is based on the TRAC-R6 scenario. 

Execution Time in Seconds (TRAC-R6, single CPU)

1.4
1011

583

1

10

100

1000

Original Initial Intermediate Final

Figure 15 – Current Clustering Performance Improvements 

Figure 14 – Optimized Current Clustering Algorithm 



 

19 

 

 

 
2.1.10 Reference Cluster Processing 
 
  Some time was spent investigating performance losses outside the formally declared bottleneck 
areas and optimized as well. The “reference cluster processing” event is composed of several 
algorithmic functional steps, which associate and merge new current clusters generated for the 
current scene with reference clusters from the previous scene. This effectively produces time-
smoothed tracks of military units based on the instantaneous noise-laden current cluster samples. 
The reference cluster-processing step required two operational modes based on the scenario-
state. If reference clusters exist from a previous interval, then this step automatically was run in 
parallel. Otherwise, if this was the first scene and no reference clusters exist, then reference 
cluster processing was kept on the group leader and is run sequentially. This was implemented 
due to the fact that the majorities of processing “for-loops” from this step iterate on the reference 
cluster list and therefore become a no-op when no reference clusters exist. This was too 
expensive to execute on multiple processing nodes when the majority of time in this step was lost 
to messaging overhead in the distribution of the current cluster list and the collection of the 
resulting reference clusters. In this case the algorithms execute on one CPU only. 
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3 Fusion Architecture Evaluation and Definition 
 
   At this point the bottlenecks within the Force Aggregator have been investigated and the 
reasons for the processing limitations known. The objective of this section is to define an 
affordable, scalable next generation fusion and exploitation architecture that is capable of 
supporting the real-time Level 2 assessment. For purposes of this program it is assumed that real-
time assessment information needs to be provided in minutes or seconds. Currently, assessment 
information is on the order of approximately ½ hour to several hours dependent on the scenario 
that is being processed. 
 
  The basic requirements summarized from results from the last section are listed below. 
 

• A large amount of memory is required per processing node. Level-2 Fusion algorithms 
utilize template-based detection and identification which requires a substantial amount of 
temporary memory.  

• There exists a need for high inter-node bandwidth to transport detailed Level 1 contact 
reports in and out of the algorithmic steps within the Force Aggregator. 

• C++ Support is required. The Evidence Network and Equipment/Organization tables are 
written completely in object-oriented C++. Conversion to C is possible but 
developmental costs would be great. 

 
  A number of hardware architecture platforms were evaluated and tested to determine their 
potential as the next generation Level 2 fusion and exploitation architecture platform. Candidate 
platforms considered were COTS Embedded platforms, adaptive computing platforms, and 
Linux Beowulf clusters. Major considerations when considering these systems were the cost and 
availability of the machines at the time of this task. The cost of each solution included the actual 
cost to purchase the system and support software, and the cost and/or difficulty of modifying the 
existing Level 2 Fusion system in order to support the proposed architecture solution. 
 
  A brief summary of each proposed system follows. 
 
3.1 COTS Embedded Computing Architectures 
 
  The Mercury Embedded system was evaluated with great detail, leading to an implementation 
of the NEAT Force Aggregator on the 16-Node Mercury RACE® system at Integrated Sensors 
Inc. Mercury has an outstanding record of robustness, reliability, and software support. However 
this “comes at a price” as this is the most expensive system considered in this hardware trade 
study. Mercury systems, as well as all other Embedded system types, tend to offer a larger 
number of processors than other platform architectures and higher inter-node bandwidth but 
often with the least amount of available memory per processor (128-256Mb maximum today).  
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  The predominant chip technology that Mercury is basing their product offerings today is the 
PowerPC™ chip, specifically the AltiVec™ series PowerPC processor. The advantage of the 
AltiVec chip is that it provides both general-purpose processing performance and high-
bandwidth data processing for algorithmic intensive computations on a single chip. In order to 
achieve this capability in previous applications, a two-chip solution was required. 
 
 Mercury as with other embedded processing architectures can be used in conjunction with a Sun 
workstation used as a co-processor. This poses an excellent potential solution for NEAT as the 
internal Sun workstation could run Sybase and NEAT, and the Force Aggregator would be 
ported to and executed on the selected embedded hardware. Mercury™ also offers ruggedized 
systems and has an extensive background in military applications.  
 
  However, Mercury as well as other COTS embedded computing architectures are very 
expensive in both hardware and software products when compared to alternatives.  
 
3.2 COTS Adaptive Computing Architectures 
 
  Adaptive computing hardware is generally considered to be field programmable gate array 
(FPGA) boards. An FPGA processor can be modified at almost any point during their usage to 
adapt to changing requirements as they evolve. When the application system is upgraded and the 
algorithms modified, an FPGA can be reprogrammed to meet the evolving needs. This is not a 
stand-alone computing architecture, but would be used in conjunction with either COTS 
embedded computing architectures or Beowulf Linux clusters. 
 
  The two main chip technology companies that are providing commercial FPGA boards are 
Xilinx™ and Altera™.  Xilinx currently is one of the major providers of FPGA chips that are 
being used on commercial boards, where each chip is capable of supporting 1-2 million gates. 
The Annapolis WILDSTAR™ board is an example of a commercial FPGA board that is based 
on Xilinx parts. 
 
  The WILDSTAR board requires the use of the VHDL programming language to define a 
logical state diagram. While a WILDSTAR emulator was available to speed code development 
and validation, time spent in software development was costly. Additionally, the Bayesian 
algorithms within the force aggregator did not lend themselves easily to the FPGA architecture. 
The WILDSTAR board seems to be more suited for signal and image processing where data 
sizes are constant and algorithmic operations are predictable and for the most part, repetitive. 
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3.3 Beowulf Linux Clusters 
 
  A low cost candidate solution for the next generation Level 2 exploitation and fusion 
architecture is the Beowulf class of supercomputers. A Beowulf machine is built from 
commodity parts such as personal computers and workstations and is connected together using 
high-speed networking hardware such as Myrinet™ or GigaNet™ to achieve supercomputing 
speeds. Beowulf actually refers to a special version of the Linux operating system modified to 
function across multiple computers and allows the user to utilize one large virtual machine. 
However, a more common alternative is the installation of ‘normal’ Linux on all processing 
nodes, and configuration of network and security of the machines to allow easy host-to-host 
access. The later option, with a GigaNet network connection, is the trial machine for this 
consideration. 
 
  The Beowulf is the lowest cost hardware and software solution, and also offers the highest 
memory per processing node (512Mb-1Gb). The processing nodes are simple desktop PCs and 
all software that is required for this system is free. However, the GigaNet network layout (110 
Mb/sec maximum) is considerably slower than Mercury’s Raceway (267 Mb/sec). 
 
3.4   Trade Space comparison 
 
  Figure 16 compares and summarizes the various performance aspects of the proposed solutions. 
 

 
Computer 

Memory 
Per CPU 

maximum 

Intra-Node
Bandwidth

C++ 
Support

Hardware 
Costs 

(per Gflop)

Software 
Costs 

Hardware 
Maint. 

Software 
Maint. 

Mercury 128 Mb 267 Mb/s Yes ** $6,940 *** $11000 Low Low 
CSPI 256 Mb 242 Mb/s Yes $5,520 *** $8800 Low Low 
Linux 1 Gb+ 110 Mb/s* Yes $400    *** $0 Moderate Zero 
Wildstar 12 Mb 267/242 No N/A $15000 Low Moderate 

 
    *Bandwidth based on GigaNet™ back-plane. 
  **Mercury PowerPC C++ Developer’s toolkit available at approx. $10,000 additional cost. 
***Average cost per GFLOP across 2, 4, and 6 processing nodes. 
 
 
 
   Due to the Beowulf’s overwhelming low cost, availability of memory per node, and 
performance potential, it was chosen as the hardware architecture solution for the HPRTF 
system. During development and testing, ISI leveraged an already existing in-house Linux 
Cluster. A large 64 node+ Linux Cluster in building 106 at the AFRL Rome Research Site will 
provide an installation and demonstration platform.  
 
   

Figure 16 – Trade Space Comparison Summary 
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4 HP-RTF System Validation 
 
  At this point the HPRTF system was prototyped and tested against scripted test cases. The 
software architecture facilitated a parallel Force Aggregation function but remained stand-alone 
from the original NEAT architecture. Under this task the HPRTF system was to be validated and 
verified by integrating HPRTF as the Force Aggregator component into the existing NEAT 
system. This is in essence returning the divorced Force Aggregator back to the software system it 
originated from. This was accomplished by using the HPC-link data transport object (see Section 
2.1.2 and Figure 5), which had previously been used only in “file” or “offline” mode during 
software development and testing in Section 2. The socket mode of HPC-link uses the same file 
descriptor and read/write commands as in disk/file mode, and so was easily adapted to network 
communication. Additional work was performed on the NEAT host-side to correctly utilize 
HPC-link for NEAT-to-HPRTF timings and data transfers. This setup is illustrated in Figure 17. 
 
  However, it became desirable to write the input cache (Level 1 Intelligence reports) to a file 
shared across NFS to the HPC machine. This allows modules in HPRTF the capability to read 
and process the input data cache directly from disk, preferably a disk mounted on the HPC 
system. This offered a performance improvement as all processing nodes can simultaneously 
read, parse, and process the intelligence reports without waiting for the group leader to receive 
and distribute the data from a single TCP socket over a standard LAN. 
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Figure 17 – NEAT/HPRTF Integrated Testbed 
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5 Demonstrations and Results 

 
  All original tasks of the HPRTF effort were completed. Processing bottlenecks that limited 
NEAT from performing in real-time were identified. The major performance bottlenecks 
included Sybase access, the Evidence Network Algorithm, the Contact Association Computation, 
and the Current Clustering Algorithm. After which, a development of a hardware requirements 
trade-space comparison was made to identify affordable solutions. Linux was chosen as an ideal 
implementation platform, but the code was also built and executed on Mercury and Sun 
platforms to test portability.  
 
  The fusion architecture was then prototyped using RTExpress and Matlab tools. HPC-link and a 
robust Level-2 data management library formed the HPTRF backbone. Algorithms from NEAT 
were wrappered in HPRTF, parallelized, and tested. Many software development iterations 
occurred to test different implementation strategies and perfect the system to achieve maximum 
performance. 
   
  The HPRTF system was then integrated with the original NEAT tool suite to validate the 
system as a whole. Minimal time and effort was spent on this effort as the GUI front-end to 
NEAT was reused. This allowed the use of the original NEAT operator interface to drive the 
HPRTF fusion engine, as well as the many other NEAT components which read and write from 
the Sybase database.  
 
  Demonstrations of working HPRTF prototypes were held at both ISI and the Rome Research 
site. The sequential Force Aggregator was demonstrated on Sun, Mercury, and Linux platforms 
during a status meeting 20-Nov-01 at ISI. The purpose of the demonstration was to show 
portability of HPRTF and RTExpress between hardware architectures. This consisted of HPRTF 
running on a single processing node on an HPC and the NEAT host software running on a Sun 
Sparc.  
 
  A second demo occurred at 10-Apr-01 where the parallel Force Aggregator was run on a 4-
node Linux cluster, connected to the NEAT host GUI running on a Sun Sparc. In addition, a 
side-by-side comparison was demonstrated with both the original NEAT software build and the 
integrated HPRTF version running on the Linux cluster.  Figure 18 depicts the demonstration 
layout. 
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   A third demo occurred at 4-Sep-01 where the parallel Force Aggregator was run on 5 nodes on 
the HADES Linux Cluster located in building 106 at the AFRL Rome Research Site. NEAT was 
installed onto a neighboring Sun Sparc workstation to replicate the appearance of the previous 
April-01 demonstration. The three test-case demonstration scenarios, SAM-618, TRAC_R6, and 
SCEN-R61 (see Section 1.4 for scenario descriptions), were demonstrated using the NEAT GUI 
on the Sun host while running the Force Aggregation process on the Linux Cluster. In addition, a 
side-by-side comparison of the Force Aggregators was demonstrated with both the original 
NEAT software build and the integrated HPRTF version running on the Linux cluster.  
 
 
  Performance results from the HPRTF project met the original requirement and goal of real-time 
Level-2 Fusion. “Real-time” in this context is the ability to provide JDL Level-2 situation 
assessment in minutes or seconds. Where the original software/hardware required hours to run, 
the HPRTF version ran in minutes. In cases where the original product required minutes to run, 
the HPRTF version functioned in seconds. A summary of performance improvements is shown 
in Figure 19. 

Figure 18 – April-01 Demonstration Layout 
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  Performance improvements were not limited to parallelizing existing algorithms across multiple 
processors. The sequential algorithmic processing was optimized as well, keeping in mind 
parallelization of a non-optimized function does not yield the best results. Figure 20 illustrates 
the scalability of the HPRTF implementation. This is followed by Figure 21 that offers a 
performance comparison between the final results and the initial Linux software build. This 
comparison reflects both sequential and parallel improvements combined. In all trials the 
software was executed on 600Mhz PC CPUs.  
 
  Compared to the original Force Aggregator, these final results show an average speed 
improvement of 47x when HPRTF is executed on one CPU, and 95x average improvement when 
run on 4 CPUs. This means that the Force Aggregator ran an average of 47 times faster with 
sequential optimizations alone, and averaged 95 times faster when run in parallel on 4 CPUs. 
Better gains in performance were made possible in the parallel version by first streamlining 
processor and memory usage in the sequential version. This demonstrates the importance of both 
sequential and parallel optimizations to improve speed performance. 
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  Figure 22 above shows an RTExpress display which depicts what each processor is doing and 
for how long, and gives insights to timing issues across multiple nodes. Shown is the parallel 
Force Aggregator processing the Trac_R6 scenario running across four 600 Mhz CPUs. 
Execution time runs from left to right. Colored sections are processing intervals and gaps 
indicate idle or a wait condition. The highlighted bands near the end of the Contact Association 
Coefficients and Reference Clusters indicate inter-processor communication, or the passing of 
data between CPUs.       

Contact Association Coefficents 

Evidence Network 
Intel report + template input 

Current Clusters 

Reference  
Clusters

Cluster Classification
C2 Node output 

Figure 22 – RTExpress Visualization 
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  Figure 23 illustrates RTExpress visualization of multiple runs using an increasing number of 
CPUs. Depicted is the parallel Force Aggregator processing the Trac_R6 scenario. To the left are 
graphical representations of what each CPU was doing during the run. See Figure 22 for details 
concerning each of the RTExpress windows. The graph to the right is a composite report of the 
results from each run. Shown here is the amount of time spent in each Force Aggregator 
algorithm versus number of CPUs used. From this one can easily see the performance 
improvement gained from each additional CPU. The diminishing gain as more processors are 
added is common in the field of parallelization and is due to increasing time in messaging 
between CPUs.  
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6 Conclusions 
 
  The HPRTF program was able to define, prototype, and demonstrate an affordable next-
generation real-time fusion and exploitation architecture that supports JDL Level 2 fusion. The 
developed architecture focused on requirements of JDL Level 2 systems, and alleviated the 
performance bottlenecks that limited NEAT from providing real-time fusion assessment. The 
parallel and sequential optimizations were accomplished by using RTExpress as a development 
and diagnostic tool. Compute-intensive algorithmic modules were identified and parallelized. 
Then using RTExpress visualization tools and the understanding of the algorithmic steps within 
the Force Aggregator, sequential optimizations were applied to improve performance further. 
The prototype was installed in building 106 at the Rome Research Site, Rome, NY, and 
demonstrated at the final meeting.  A development environment was also installed to facilitate 
integration and reuse of the HPRTF products with other projects after completion of the HPRTF 
contract. 
 
  It is hoped that this product either bundled with NEAT as a parallel real-time force aggregator 
or as the developmental fusion architecture alone, is reused to the fullest extent possible. One 
possible follow-on effort is the wrappering and interfacing of HPRTF/NEAT as a JBI Fuselet, 
where the system would act as a real-time Level-2 Fusion agent. This fusion outlet could 
subscribe to Level-1 intelligence streams, compute the battlefield situation assessment, and 
broadcast military units at their estimated locations in real-time. There is no other system 
available that can provide this function in real-time. 
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7 List of symbols and abbreviations 
 
 
C2 nodes  Command and Control Nodes or military unit clusters 
COMINT  Communications Intelligence 
Contact Report An intelligence report equivalent to a JDL Level-1 track with ID 
COTS   Commercial off-the-shelf technology 
CPU   Central processing unit, also equivalent to “processing node” 
Data Parallel A parallelization technique where algorithmic processes remain relatively 

unchanged but the data it processes is partitioned across processing nodes 
Force Aggregation JDL Level-2 Fusion, or situation refinement of Level-1 reports into 

aggregate clusters 
FPGA   Field programmable gate arrays 
GigaNet  A 3rd party PCI-based network hardware and software package 
Group leader  Lead processing node or CPU within a multi-processor machine 
HPC   High Performance Computer, generic for multi-processor computers 
HPC-link  File/Socket software interface between NEAT and HPRTF 
HPRTF  High Performance Real Time Fusion Architecture   
JDL   Joint Directors of Laboratories 
LAN   Local Area Network 
MTI   Moving Target Indicator 
MxArray  Matlab™ generic storage structure type for all data types 
Myrinet™  A 3rd party parallel-based network hardware and software package 
NEAT   Nodal Exploitation and Analysis Tools – a JDL Level-2 fusion system 
NFS   Network File System 
Processing node Single logical node in a multi-node computer. Equivalent to “CPU” 
Raceway®  Mercury™ high-speed inter-node communication network 
RTExpress “Real-Time-Express” development software used to build and debug 

source code across multiple HPC hardware architectures 
SAM   Surface-to-Air Missile, or the battery that supports it 
Semaphore  Software-level signal to key processes on the same or different machine 
SIGINT  Signal Intelligence, specifically those emitted by radars 
Template  A single military unit template describing equipment and organization 
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8 Appendix A - Hardware Trade Study 
 
This appendix presents a study and comparison of available high-performance computing 
architectures for the implementation of the HPRTF system.  There were three systems compared 
across seven attributes. 
 
The systems compared were: 

1. Mercury 
2. CSPI 
3. Linux Clusters 

 
The attributes investigated were: 

a. processing power 
b. hardware cost 
c. software cost 
d. space and weight requirements 
e. air flow requirements 
f. power requirements 

 
The following pages will detail this study. 
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8.1 Mercury 
 
 
 

 
Figure 24 - Mecury Nodes vs. Processing 
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Base System Requirements (2001 prices) 
Chasis (21 Slot 6U VME)  $42,300 
Motherboard (MCJ6-VH)  $4,800 
C Development and Runtime  $11,000 
RACEWAY Interlink   $2,300 
Daughtercards    $17,600 each (P2J128J-Q-VH) 
2 nodes with (1400Mhz PowerPC, 128Mb RAM) each Race++ 

 
Figure 25 – Mercury Nodes vs. Cost 
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Figure 26 – Mercury Power and Air-Flow Requirements 
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Figure 27 – Mercury Weight 
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Figure 28 – Mercury Space Requirements 
 

MERCURY CHASIS 6U Series 9U and Hybrid Systems

Dimensions (HxWxD) 17.5x19x21 22.75x19x28
Weight 75 lbs 95 lbs
Air flow 2x365 CFM fans 2x365 CFM fans
3.3 volts 120a 160a

Input voltage 100-120 VAC, or 200-240 VAC, or 208-3 phase
Frequency 50-60 Hz

Temperature 5-40 deg C
Altitude 8000 f t
Noise 65 dBA
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8.2 CSPI 
 
 
 
 
 
 
 
 

 
 

Figure 29 – CSPI Nodes vs. Processing
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Basic System Requirements (2001 prices) 
Chassis (6 slot VME_) $16,650 
Development and Runtime $8,800 
M2K Backplace overlay $5,100 
Processor Boards  $50,906 
CSPI 2841, 4x400Mhz PowerPC, 14 Gflops) 
 

 
Figure 30 – CSPI Nodes vs. Cost
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Figure 31 – CSPI Power and Air-Flow Requirements 
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Figure 32 – CSPI Weight 
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Figure 33 – CSPI Space Requirements 
 
 
 

CSPI
2741/2721 2841/2821

4 cpus 2 cpus 4 cpus 2 cpus
Processors 400Mhz PowerPC 750 400Mhz MPC7400 w/AltiVec

Memory 256 Mb 128 Mb 1 Gb max 512 Mb max

Node Bandwidth Myrinet on VME Myrinet on VME

Advertised Speed 3.2 GFLOPS 1.6 GFLOPS 14 GFLOPS 7 GFLOPS

Weight 2 lbs 1 lb 2 lbs 1 lb

Temp Range 0-50 deg C at 12 CFM 0-50 deg C at 12 CFM

Altitude <10000ft <10000ft

Humidity 5-90%

Power 45.2 Watts typical, 62.0 watts max 25 watts 14 watts
Power 3.3v 25 14 26 14.5
Power 5.0v 30 15 36 18

CHASIS 12-Slot 21-Slot

5 volts 120a 120a
12 volts 8a 8a
minus 12 8a 8a
3.3 volts 120a 160a

Input voltage 90-264 volts
Input Current (max) 12a @ 120vac 14a @ 120vac
Frequency 47-63 Hz
Size (HxWxD) 14x19x20.5 17.5x21x19
Weight 55 lbs 80 lbs

Cooling/Air flow 3x100CFM fans 1x410 CFM fan
Temperature 0-40 deg C
Humidity 10-95%
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8.3 Linux Cluster 

 
 

Figure 34 – Linux Cluster Nodes vs. Processing 
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Base System Requirements (2001 prices) 
GigaNet Hub    $2500 
All Software    Free 
AMD 1.2 Ghz 512Mb RAM node $210 
GigaNet Network Adapter  $450 
1U Rack Case w/150W PS  $180 
 
 

 
 

Figure 35 – Linux Cluster Nodes vs. Cost
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Figure 36 – Linux Cluster Power and Air-Flow Requirements 
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Figure 37 – Linux Cluster Weight and Space Requirements
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Figure 38 – Cost Comparison 
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9 Appendix B - Users Guide 
 
Installation 
 
The HPRTF software is written in C/C++ and compiles using RTExpress to build a parallel 
version of the Force Aggregator component from NEAT. RTExpress must be installed and 
configured on the target machine before compiling the HPRTF software. This installation 
procedure assumes the target host runs Linux, however the code has been previously compiled 
on Sun and Mercury platforms. C++ support is required, and GCC version 2.95.2 or higher is 
suggested. 
 
Contact Integrated Sensors Incorporated for questions and availability of RTExpress software. 
 Integrated Sensors, Inc. 
 502 Court St., Suite 210 
 Utica, NY 13502 
 (315) 798-1377 
 
The HPRTF application, once built, can run standalone from data files or in concert with a 
special modified version of NEAT in a demonstration mode. If the demo mode is desired, it is 
strongly recommended that a “neat” home account be installed on the target HPC machine, and 
the NEAT host (requires a Sun with Solaris 2.6 or higher) share the account via the “auto-home” 
Unix mechanism. In this manor, data files can be easily shared across machines and no HPC 
processing latency is introduced as the account physically exists on the HPC side. Consult the 
system administrator of the machines if necessary. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 39 – Physical Storage of NEAT Account and Sybase Database
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NEAT Host-Side Install 
 
  This step is required if the HPRTF demonstration mode is desired, where the original NEAT 
tool suite interacts in real-time with the HPRTF HPC process. NEAT requires installation onto a 
Sun SPARC host, running Sybase 12+ and Solaris 2.6 or greater. If only stand-alone operation is 
needed, this step can be skipped. 
 

• Create a NEAT user account. If possible, create the account on the HPC side and share it 
with the Sun host using the Unix “auto-home” feature. Make sure the account has the 
path “/home/neat” to avoid unnecessary configuration steps. 

 
• Install Sybase. Insert the Sybase CDROM and follow installation procedures as directed 

by the Sybase install program. Follow operating-system specific procedures defined in 
the Sybase install manual. When prompted to install a database, configure a server named 
“SYBASE”. Entire the path of the database file as “/usr/sybase/databases/NEAT” and the 
sys-proc file “/usr/Sybase/databases/SYSPROC”.  Use default settings for all other fields. 

 
• Insert the HPRTF Software CDROM into the target Sun machine. From the NEAT user 

base directory (/home/neat), open the “NEAT Software” tar distribution.  
 

cd /home/neat 
tar xvf /cdrom/cdrom0/NEAT_host_software.tar 
 
Installation of the source into the base directory of NEAT is necessary to avoid 
configuration problems in NEAT. If it is not possible to maintain this directory path, the 
“.neat” configuration script will need to be modified to the new path. 
 
The NEAT host-side install will create a base directory “HPRTF” with the NEAT host-
side install contained within it.  
 

• Test the NEAT file path configurations.  
 
cd HPRTF/NEAT 
source .neat 
 

This will execute the NEAT setup script and initialize the Sun host-side tool suite. The script 
defines easily readable directory paths at the start of the file, which are used through out the 
rest of the setup. If any of these paths are invalid, the script returns errors stating the missing 
components. 



 

50 

 

 

 
 

• Test the Sybase setup. First test whether the server is already active. This is accomplished by 
executing the script (in ~/HPRTF/NEAT): 

 
showserver 
 
If no servers are listed, then attempt to start the server using the script: 
 
startserver 
 
Typical first-time errors sometimes involve user-permissions to Sybase database files. If 
errors are encountered, change ownership of the database files to the NEAT user. At 
anytime when NEAT is not being used, the server can be safely stopped using the 
command: 
 
stopserver. 
 

If necessary, refer to the Sybase install manual to resolve any remaining errors. 

 
• Install a NEAT database schema. Change directory to “~/HPRTF/NEAT/fd” and run the 

“install” script. This will configure a schema to manage NEAT-specific data. 
 

cd fd 
install 
 

Install a NEAT scenario. Change directory to “~/HPRTF/NEAT/scenario” and run the “load_neat_scenario” 
script. This will load the “neat_scenario” scenario data file into the database. The installation procedure displays 
the contents of the contact reports in ASCII form as they are read back from Sybase and validated. 

 
cd ../scenario 
load_neat_scenario 
 

• Run NEAT. After sourcing the “.neat” configuration script, execute the Nodal Aggregation 
Tool with the command: 

 
run_nat 
 
The following windows will appear: 
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Figure 40 - NAT Main Control Window 
 

 
 

Figure 41 - NEAT Display GUI 
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  At this point the NEAT software is completely installed and has the ability to function either 
standalone (sequential optimized on the Sun host) or in concert with the HPRTF component. If 
NAT does not function, observe any error statements from the command line. Errors prohibiting 
execution include Sybase configuration problems, display settings, and NEAT configurations. 
All three usually state the problem clearly. All NEAT-related environmental configurations are 
set from the .neat script and can be edited there if necessary. The map display works on both 8-
bit and 24-bit display modes on most all Sun frame buffers. 
 
 
HPRTF Software Install 
 
 
  Installation of the HPRTF software onto the HPC target host is considerably easier than the 
NEAT software installation and validation in section B1.1. To guarantee a usable demonstration 
system the NEAT account on the HPC should be shared with the Sun host containing the NEAT 
install. If a file-based mode is to be used then this is not an issue. Additionally, an optional 
connection mode between NEAT and HPRTF allows communication through TCP sockets. This 
mode should be used when account sharing across machines is not an option. 
   
 

• Insert the HPRTF Software CDROM into the target Sun machine. From the NEAT user 
base directory (/home/neat), open the “HPRTF Software” tar distribution.  

 
cd /home/neat 
tar xvf /cdrom/cdrom0/HPRTF_host_software.tar 
 

This will install the entire HPRTF software distribution. A directory is created for each Force 
Aggregator C/C++ library needed for compilation, and a main “hprtf” directory organizes all 
of the top-level Matlab wrappers, which define the HPRTF system.   

 

This completes the installation process. Compilation directions follow in the next section. 
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HPRTF Software Compilation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42 - HPRTF Software Distribution 
 
 
To compile the HPRTF system, first compile all of the support libraries, build the main source 
under the “hprtf” subdirectory. All required support libraries can be compiled by using the 
command “make_neat_libs” under the main “hpc_src” directory.  
 
make_neat_libs 
 
The second step consists of generating and compiling the program main for HPRTF. RTExpress 
is required for this process. 

hpc_src 

db 

evidence

fusion 

stubs 

misc 

support 

utils 

NEAT Cache Database library 

NEAT Evidence Network Algorithm 

NEAT Fusion Algorithm Library 

NEAT Sybase and Map-GUI stubs 

HPRTF misc. support library – HPC-link 

NEAT misc. support library 

Separate utility programs – HPC-log 

hprtf HPRTF Top-level build directory 

C/C++ Libraries 

HPRTF Main 
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The main Matlab file containing the top-level Force Aggregation function is the 
“force_aggregator.m” file in the “hprtf” subdirectory. RTExpress uses this file, as well as 
machine configurations and user options, to build the HPRTF main source. This is accomplished 
by using the RTExpress “mapit” utility. As with any other RTExpress utilities, first run the 
“rtsession” command to establish a license token. 
 
rtsession 
mapit  force_aggregator 
 
 

 
 

Figure 43 - RTExpress mapit utility 
 
 
The left-side display shows processor configuration and assignments. The right-side half of the 
display gives access to compilation options in the HPRTF application. See the RTExpress user 
manual for more information and details on usage of this tool. 
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To generate the HPRTF main source, first build the “makefile” and launch-script using the 
“mapit” utility. Select “Generate Make and Launch” under the “Group” main pull-down 
 

 
 

Figure 44 - RTExpress mapit utility – Generate Make and Launch 
 
 
This generates the “makefile” and a full build environment for compilation of the HPRTF system 
using the configuration settings specified in the “mapit” GUI.  A status window will display the 
status of each step of this process. 
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Figure 45 - “Generate Make and Launch” status window 
 
At this point a complete build environment exists. The application can now be compiled from the 
command-line prompt. A “make” pre-process must be performed on the build environment to 
allow compilation with the NEAT function libraries. 
 
fixMake 
make 
 
This will generate the final executable. Running the “go” script (also generated by “mapit”) can 
now launch the HPRTF application. This will run HPRTF as configured in the 
“force_aggregator.m” application main.  
 
go 
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NEAT/HPRTF Demonstration Sequence 
 
This section details what steps are necessary to run NEAT on the Sun host with HPRTF on the 
HPC host as the Force Aggregator. 
 

• First, prepare to run NEAT on the Sun host.  
 

cd /home/neat/HPRTF/NEAT 
source .neat 

 
• Make sure the Sybase server is active. 
 

showserver 
 
• If no servers are listed, start the NEAT Sybase server. 
 

startserver 
 

• Start the NAT application. There are multiple optional modes for this dual-machine 
demo. If the NEAT home account has been setup to be shared between machines, the 
NFS-file mode is preferable. In this case, the HPC hostname and cache filename are 
necessary command-line arguments. The filename needs to contain the full pathname 
to assure correct execution. 

 
run_nat –file <filename> –sig <hpc_host> 
 
If a shared account is not available, the socket mode can be used. This results in 
slower execution times as an extra step is required on the HPC side to distribute the 
data cache. 
 
run_nat –socket <hpc_host> 
 
Lastly, if instead it is desired to simply generate a cache file for offline testing of the 
HPRTF system (later using the file as input on the HPC-side), the file-generation 
option can be used. This will write the file without any processing. 
 
run_nat –file <cache_output_filename> 
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The NAT application window and map GUI should now be open. 
 

• First select the military template file to be used for processing. This is usually paired 
with the input scenario and should have a similar filename as the truth scenario. 
Select “open” under the “file” pull-down. Next select the file from the file-selection 
pop-up window. 

 

 
 

 
 

Figure 46 – Loading a Military Template File 
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• Activate the Force Aggregation function from the NAT window. Select “Military 

Unit Track” under the “Actions” pull-down. 
 

 

 
 

Figure 47 - “Military Unit Track” Action 
 
 

At this point NEAT will build the contact-report data cache. If the HPRTF system is to be 
used, and the Force Aggregator has not been started yet on the HPC host, start it now.  

 

• Log onto the HPC and change directory to the main build area “hprtf”. Then run the 
“go” script to launch the Force Aggregator. The application will then go into a sleep 
state until the data cache is received from NEAT. 

 

Once NEAT completes building the data cache, the Nodal Track window appears. 
(Following page) 
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Figure 48 - Nodal Track Window 
 
 

• Pressing the “track” button at this point sends the data cache to the HPC and starts the 
Force Aggregation process. The login shell used to start the Force Aggregator should 
come to life and immediately begin processing. When completed, the results (C2 
Nodes) are transmitted back to the NEAT application via NFS file or socket, 
depending on the mode used. 
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Figure 49 - Force Aggregation Results 
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This concludes the demonstration sequence. The Force Aggregator can be activated again 
without restarting the NAT application by selecting the “Track” button again. At anytime after or 
between processing C2 Nodes, the results from a previous run can be deleted from the screen and 
Sybase database by selecting the “clear” button. 
 

 
 


